LeNet代码走读

本代码还有点小问题没解决,应该直接运行会报错,不过不影响理解,时间关系不过于纠结

This tutorial introduces the LeNet5 neural network architecture
using Theano. LeNet5 is a convolutional neural network, good for
classifying images. This tutorial shows how to build the architecture,
and comes with all the hyper-parameters you need to reproduce the
paper’s MNIST results.

This implementation simplifies the model in the following ways:

  • LeNetConvPool doesn’t implement location-specific gain and bias parameters
  • LeNetConvPool doesn’t implement pooling by average, it implements pooling
    by max.
  • Digit classification is implemented with a logistic regression rather than
    an RBF network
  • LeNet5 was not fully-connected convolutions at second layer

References:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import print_function

import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T
from theano.tensor.signal import pool
from theano.tensor.nnet import conv2d

from code.logistic_sgd import LogisticRegression, load_data
from code.mlp import HiddenLayer


class LeNetConvPoolLayer(object):
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
assert image_shape[1] == filter_shape[1]
self.input = input

fan_in = numpy.prod(filter_shape[1:])
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) //
numpy.prod(poolsize))

# Xarvier初始化方法
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
# 均匀分布
self.W = theano.shared(
numpy.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX
),
borrow=True
)

b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
# 一个filter一个b
self.b = theano.shared(value=b_values, borrow=True)

conv_out = conv2d(
input=input,
filters=self.W,
filter_shape=filter_shape,
input_shape=image_shape
)

pooled_out = pool.pool_2d(
input=conv_out,
ds=poolsize,
ignore_border=True
)

# add the bias term. Since the bias is a vector (1D array), we first
# reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
# thus be broadcasted across mini-batches and feature map
# width & height
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

# store parameters of this layer
self.params = [self.W, self.b]

# keep track of model input
self.input = input


def evaluate_lenet5(learning_rate=0.1, n_epochs=200,
dataset='mnist.pkl.gz',
nkerns=[20, 50], batch_size=500):
rng = numpy.random.RandomState(23455)
datasets = load_data(dataset)

train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
print('train:', train_set_x.shape, train_set_y.shape)
print('valid:', valid_set_x.shape, valid_set_y.shape)
print('test:', test_set_x.shape, test_set_y.shape)

n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
# // 除取整,返回商的整数部分
# 求有几个batch
n_train_batches //= batch_size
n_valid_batches //= batch_size
n_test_batches //= batch_size

# lscalar是一种TensorType,意思是long scalar,
# 他们的不同之处是是dtype、ndim、brodcastable
# http://deeplearning.net/software/theano/library/tensor/basic.html
index = T.lscalar()

x = T.matrix('x')
y = T.ivector('y')

print('... building the model')

layer0_input = x.reshape((batch_size, 1, 28, 28))
layer0 = LeNetConvPoolLayer(
rng,
input=layer0_input,
image_shape=(batch_size, 1, 28, 28),
filter_shape=(nkerns[0], 1, 5, 5),
poolsize=(2, 2)
)

layer1 = LeNetConvPoolLayer(
rng,
# 注意这里,直接就填layer0.output,不用自己算了
input=layer0.output,
# 上一层有nkerns[0]个filter
# 一个image和n个filter得到n张feature map
# 就相当于一个image被处理出了n个channel
image_shape=(batch_size, nkerns[0], 12, 12),
filter_shape=(nkerns[1], nkerns[0], 5, 5),
poolsize=(2, 2)
)

# 被flatten成2D的
layer2_input = layer1.output.flatten(2)
layer2 = HiddenLayer(
rng,
input=layer2_input,
n_in=nkerns[1] * 4 * 4,
n_out=500,
activation=T.tanh
)

layer3 = LogisticRegression(input=layer2_input, n_in=500, n_out=10)

cost = layer3.negative_log_likelihood(y)

test_model = theano.function(
[index],
layer3.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]
}
)

validate_model = theano.function(
[index],
layer3.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]
}
)

params = layer3.params + layer2.params + layer1.params + layer0.params
grads = T.grad(cost, params)

# 首先grads是已定义的求导运算,在运行时grads包含所有layer所有参数的导数
# updates的每一个elem都是(param_i, 已使用GD更新的param_i)
updates = [
(param_i, param_i - learning_rate * grad_i)
for param_i, grad_i in zip(params, grads)
]

# 它是一条数据一条数据地训练的...
train_model = theano.function(
[index],
cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]
}
)

print('... training')
patience = 10000
patience_increase = 2
improvement_threshold = 0.995
validation_frequency = min(n_train_batches, patience // 2)

# inf = infinite 无穷大
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = timeit.default_timer

epoch = 0
done_looping = False
# 设置训练的终止条件
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
# 每个batch一次
for minibatch_index in range(n_train_batches):
# iter是目前遍历到第几组数据
iter = (epoch - 1) * n_train_batches + minibatch_index

if iter % 100 == 0:
print('training @ iter = ', iter)
# minibatch_index是训练到目前batch中的第几个
# train_model输出的是cost
cost_ij = train_model(minibatch_index)
# 如果一个epoch完了
if (iter + 1) % validation_frequency == 0:

# compute zero-one loss on validation set
# 将每个batch的val_loss加起来求mean
validation_losses = [validate_model(i) for i
in range(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' %
(epoch, minibatch_index + 1, n_train_batches,
this_validation_loss * 100.))

# if we got the best validation score until now
if this_validation_loss < best_validation_loss:

# improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
# 如果val_loss还有提高的话,就把patience设大一些
patience = max(patience, iter * patience_increase)

# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter

# test it on the test set
test_losses = [
test_model(i)
for i in range(n_test_batches)
]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of '
'best model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))

if patience <= iter:
done_looping = True
break

end_time = timeit.default_timer()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i, '
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print(('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)


if __name__ == '__main__':
evaluate_lenet5()


def experiment(state, channel):
evaluate_lenet5(state.learning_rate, dataset=state.dataset)